Abstract:Convolution Neural Network (CNN) for facial beauty prediction, can learn the deep feature expression, but can extract the global feature and neglect the local information of the face. Therefore, it has poor generalization ability. In this paper, a facial beauty prediction algorithm combined Local binary pattern (LBP) and CNN is presented. Fistly, data augmentation technology is utilized to expand the scale of the database. Secondly, the LBP texture image is channel-fused with the original grayscale image, and then the linear combination of channel feature maps is implemented by a 1×1 convolution operation. Thus the cross-channel information fusion of the network is realized, so as to improve the accuracy of facial beauty prediction. Experimental results based on the Large Scale Asian Female Beauty Database (LSAFBD) show that the algorithm presented has good prediction ability in the classification and regression, which is superior to the other models for facial beauty prediction, and demonstrate that adding texture images to CNN can effectively improve the accuracy of facial beauty prediction.
G. Rhodes, S. Yoshikawa, A. Clark, K. Lee, R. McKay and S. Akamatsu. Attractiveness of facial averageness and symmetry in non-western cultures: in search of biologically based standards of beauty[J]. Perception, 2001,78(3): 611-625.
[2]
Z. Deng and Z. Zhang. Event-Related Complexity Analysis and its Application in the Detection of Facial attractiveness[J]. Neural Syst, 2014,24(7):1450026.
[3]
K. Grammer, B. Fink, AP. M?ller and R. Thornhill. Darwinian aesthetics: sexual selection and the biology of beauty[M]. Biol Rev Camb Philos Soc, 2003,78(3): 385-407.
[4]
T. Valentine, S. Darling and M. Donnelly.Why are average faces attractive? The effect of view and averageness on the attractiveness of female faces[J]. Psychon Bull Rev, 2004,11(3): 482-487.
[5]
H. Mao, L. Jin and M. Du. Automatic classification of Chinese female facial beauty using Support Vector Machine[J]. Proc. of IEEE SMC, 2009: 4842-4846.
[6]
S. Kalayci, H. K. Ekenel, and H. Gunes. Automatic analysis of facial attractiveness from video[C]. IEEE International Conference on Image Processing. IEEE, 2015:4191-4195.
[7]
J. Fan, K. P. Chau, X. Wan, L. Zhai and E. Lau. Prediction of facial attractiveness from facial proportions.Pattern Recognition[J], 2012,vol. 45: 2326-2334.
[8]
D. Zahang, Q. Zhao and F. Chen. Quantitative analysis of human facial beauty using geometric features[J]. Pattern Recognition,2011, 44(4): 940-950.
[9]
L. Liang, L. Jin, and X. Li. Facial skin beautification using adaptive region-aware mask[J]. IEEE Trans. On Cybernetics, 2014,44(12): 2600-2612.
[10]
S. Nitish, C. G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014,15(1): 1929-1958.
[11]
T. Ojala,?T. Maenpaa, M. Pietikainen. Multiresolution grayscale and rotation invariant texture classfication with local binary pattern[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,24(7): 971-987.
[12]
Wu X, He R, Sun Z, et al. A Light CNN for Deep Face Representation with Noisy Labels[J]. IEEE Transactions on Information Forensics & Security, 2015:1-1.
[13]
J. Gan, Y. Zhai, and B. Wang. Unconstrained?facial?beauty?prediction?based?on Multi-scale?K-means[J]. Chinese Journal of Electronics, 2017: 548-556.
[14]
Jia Y, Shelhamer E, Donahue J, et al. Caffe: Convolutional Architecture for Fast Feature Embedding[J]. Eprint Arxiv, 2014:675-678.
[15]
Eisenthal Y, Dror G, Ruppin E. Facial attractiveness: beauty and the machine[J]. Neural Computation, 2006, 18(1): 119-142.
[16]
A. Kagian, G. Dror, T. Leyvand, D. Cohen-Or, and E. Ruppin. A Humanlike Predictor of Facial Attractiveness[C].Proc. of NIPS, 2006: 649-656.
[17]
H. Yan.Cost-sensitive ordinal regression for fully automatic facial beauty assessment[J]. Neurocomputing, 2014,no.129: 334-342.
[18]
W. Chiang, H. Lin, C. Huang, L. Lo, and S. Wan. The cluster assessment of facial attractiveness using fuzzy neural network classifier based on 3D Moir features[J]. Pattern Recognition, 2014, 47(3):1249-1260.
[19]
Gan J Y, Li L C, Zhai Y K, et al. Deep self-taught learning for facial beauty prediction[J]. Neurocomputing. 2014, 144(1): 295-303.
[20]
D. Xie, L. Liang, L. Jin, J. Xu and M. Li.SCUT-FBP:A benchmark database for facial beauty analysis[C].Hong Kong: Systems, Man, and Cybernetics. 2015:1821-1826.
[21]
Xu J, Jin L W, Liang L, et al. A new humanlike facial attractiveness predictor with cascaded fine-tuning deep learning model[J]. Computer Science, 2015, 70(1): 45-79.
[22]
Chen F, Xiao X, Zhang D. Data-Driven Facial Beauty Analysis: Prediction, Retrieval and Manipulation[J]. Springer International Publishing, 2016, 1: 1-18.
[23]
Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[C]. Boston, USA: Computer Vision and Pattern Recognition. 2015: 1-9.
[24]
Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition[J]. Computer Science. 2014, 1: 132-145.
[25]
Sun Y, Chen Y, Wang X, et al. Deep learning face representation by joint identification-verification[C]. Quebec, Canada: Neural Information Processing Systems. 2014. 1988-1996.
[26]
Lin M, Chen Q, Yan S. Network in Network[J]. Computer Science. 2014, 1: 85-97.