Abstract:Radar weak target detection under complex background has always been a worldwide difficult problem in the field of radar signal processing. With the development of novel radar system, more spatial dimensions can be provided for signal processing. Orthogonal waveform multiple-input-multiple-output (MIMO) radar's wide-transmission and narrow-reception with ubiquitous observation can effectively extend the dwell time of the target. It can realize the joint signal processing in the time, space, and frequency domain, and high-resolution estimation, thereby helping to accumulate target’s energy and suppress clutter, which can improve the ability for weak and small targets detection in strong clutter background. In view of the advantages of orthogonal waveform MIMO radar, the recent research progress of long-time integration and target detection technology are summarized in this paper. The concept and classification of orthogonal waveform MIMO radar long-time integration are introduced. Effective solutions of maneuvering targets integration using orthogonal waveform MIMO radar are provided from the aspects of characteristics of maneuvering target, transform domain coherent integration, tracking-before-detection, long-time coherent integration, and sparse time-frequency analysis etc. Finally, the problems in the existing research are summarized, and the future development of technology is provided as well.
Ding Hao, Dong Yunlong, Liu Ningbo, Wang Guoqing, Guan Jian. Overview and Prospects of Research on Sea Clutter Property Cognition[J]. Journal of Radars, 2016, 5(5): 499-516.
Xu Jia, Peng Ying-ning, Xia Xiang-gen, Long Teng, Mao Er-ke. Radar Signal Processing Method of Space-Time-Frequency Focus-Before-Detects[J]. Journal of Radars, 2014, 3(2): 129-141.
Wang Yong-liang, Liu Wei-jian, Xie Wen-chong, Duan Ke-qing, Gao Fei, Wang Ze-tao. Research Progress of Space-Time Adaptive Detection for Airborne Radar[J]. Journal of Radars, 2014, 3(2): 201-207.
PEI Jiazheng, HUANG Yong, DONG Yunlong, et al. Track-before-detect algorithm based on improved auxiliary particle PHD filter under clutter background[J]. Journal of Radars, 2019, 8(3): 355-365.
[11]
L. R. Moyer, J. Spak, P. Lamanna. A Multi-Dimensional Hough Transform-Based Track-Before-Detect Technique for Detecting Weak Targets in Strong Clutter Backgrounds[J]. IEEE Transactions on Aerospace and Electronic Systems. 2011, 47(4): 3062-3068.
CHEN Xiao-long, LIU Ning-bo, WANG Guo-qing, GUAN Jian. Radar Detection Method for Moving Target Based on Radon-Fourier Fractional Fourier Transform. Chinese Journal of Electronics, 2014, 42(6): 1074-1080.
Zhang Yue, Zou Jiangwei, Chen Zengping. Long-time coherent integration targets detection method for ubiquitous radar[J]. Journalof National University of Defense Technology, 2010,32(06): 15-20.
[14]
J. Yi, X. Wan, H. Leung, et al. MIMO Passive Radar Tracking Under a Single Frequency Network[J]. IEEE Journal of Selected Topics in Signal Processing. 2015, 9(8): 1661-1671.
[15]
J. Tang, N. Li, Y. Wu, et al. On Detection Performance of MIMO Radar: A Relative Entropy-Based Study[J]. IEEE Signal Processing Letters. 2009, 16(3): 184-187.
Zhang Nan, Tao Ran, Shan Tao, et al.. Performance analysis of target detection using long-term integration in external illuminating radar[J]. Acta Electronica Sinica, 2008(06): 1103-1107
[18]
X. Chen, B. Chen, J. Guan, et al. Space-Range-Doppler Focus-Based Low-observable Moving Target Detection Using Frequency Diverse Array MIMO Radar[J]. IEEE Access. 2018, 6: 43892-43904.
[19]
A. De Maio, M. Lops. Design Principles of MIMO Radar Detectors[J]. IEEE Transactions on Aerospace and Electronic Systems. 2007, 43(3): 886-898.
[20]
E. Fishler, A. Haimovich, R. S. Blum, et al. Spatial Diversity in Radars—Models and Detection Performance[J]. IEEE Transactions on Signal Processing. 2006, 54(3): 823-838.
[21]
D. J. Rabideau, P. Parker. Ubiquitous MIMO multifunction digital array radar[C]. 2003.
[22]
F. I. Urzaiz, á. D. De Quevedo, A. M. Ayuso, et al. Design, implementation and first experimental results of an X-band ubiquitous radar system[C]. 2018.
[23]
Q. Bao, Z. Chen, Y. Zhang, et al. Long term integration of radar signals with unknown Doppler shift for ubiquitous radar[J]. Journal of Systems Engineering and Electronics. 2011, 22(2): 219-227.
[24]
L. A. Johnston, V. Krishnamurthy. Performance analysis of a dynamic programming track before detect algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems. 2002, 38(1): 228-242.
[25]
I. S. Reed, R. M. Gagliardi, L. B. Stotts. A recursive moving-target-indication algorithm for optical image sequences[J]. IEEE Transactions on Aerospace and Electronic Systems. 1990, 26(3): 434-440.
[26]
M. De Feo, A. Graziano, R. Miglioli, et al. IMMJPDA versus MHT and Kalman filter with NN correlation: performance comparison[J]. IEE Proceedings - Radar, Sonar and Navigation. 1997, 144(2): 49-56.
QU Chang-wen;HUANG Yong;SU Feng. Radar Track-Before-Detect Algorithm of Multitarget Based on the Dynamic Programming. Chinese Journal of Electronics, 2006, 34(12): 2138-2141.
[28]
B. D. Carlson, E. D. Evans, S. L. Wilson. Search radar detection and track with the Hough transform. I. system concept[J]. IEEE Transactions on Aerospace and Electronic Systems. 1994, 30(1): 102-108.
LU Jin, SU Hong-Tao, SHUI Peng-Lang. Particle Filter based Non-coherent Integration Method for Detection. Journal of Signal Processing, 2015, 31(6): 652-659.
[30]
X. Li, Z. Sun, T. S. Yeo, et al. STGRFT for Detection of Maneuvering Weak Target With Multiple Motion Models[J]. IEEE Transactions on Signal Processing. 2019, 67(7): 1902-1917.
Chen Yuanzheng, Zhu Yongfeng, Zhao Hongzhong, et al.. detection algorithm research of high velocity moving target based on the envelope interpolation[J]. Signal Processing, 2004(04): 387-390.
WANG Jun;ZHANG Shou-hong. Study on the Motion Compensation of Range Migration for Weak Moving Target Detection. Chinese Journal of Electronics, 2000, 28(12): 56-59.
[35]
J. Xu, J. Yu, Y. Peng, et al. Radon-Fourier Transform for Radar Target Detection, I: Generalized Doppler Filter Bank[J]. IEEE Transactions on Aerospace and Electronic Systems. 2011, 47(2): 1186-1202.
CHEN Xiao-Long, GUAN Jian, HUANG Yong, WANG Guo-Qing, HE You. Application of Fractional Fourier Transform in Moving Target Detection and Recognition: Development and Prospect. Journal of Signal Processing, 2013, 29(1): 85-97.
Chen Xiao-long, Dong Yun-long, Li Xiu-you, Guan Jian. Modeling of Micromotion and Analysis of Properties of Rigid Marine Targets[J]. Journal of Radars, 2015, 4(6): 630-638.
Chen Xiao-lng, Guan jian, He You. Applications and Prospect of Micro-motion Theory in the Detection of Sea Surface Target[J]. Journal of Radars, 2013, 2(1): 123-134.
ZHANG Nan;TAO Ran;WANG Yue. A Target Detection Algorithm Based on Scaling Processing and Fractional Fourier Transform. Chinese Journal of Electronics, 2010, 38(3): 683-688.
[40]
邹红星周小波李衍达. 时频分析:回溯与前瞻[J]. 电子学报. 2000(09): 78-84.
ZOU Hong-xing;ZHOU Xiao-bo;LI Yan-da. Which Time-frequency Analysis——A Survey. Chinese Journal of Electronics, 2000, 28(8): 78-84.
Sun Yanli, Chen Xiaolong, Liu Ye. Detection and performance analysis of radar coherent integration for moving target in transform domain[J]. Journal of Terahertz Science and Electronic Information Technology, 2019,17(03): 457-461.
[42]
R. Tao, Y. Li, Y. Wang. Short-Time Fractional Fourier Transform and Its Applications[J]. IEEE Transactions on Signal Processing. 2010, 58(5): 2568-2580.
[43]
X. Chen, J. Guan, Z. Bao, et al. Detection and Extraction of Target With Micromotion in Spiky Sea Clutter Via Short-Time Fractional Fourier Transform[J]. IEEE Transactions on Geoscience and Remote Sensing. 2014, 52(2): 1002-1018.
[44]
X. Chen, X. Yu, Y. Huang, et al. Adaptive Clutter Suppression and Detection Algorithm for Radar Maneuvering Target With High-Order Motions Via Sparse Fractional Ambiguity Function[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2020, 13: 1515-1526.
[45]
P. Wang, I. Djurovic, J. Yang. Generalized High-Order Phase Function for Parameter Estimation of Polynomial Phase Signal[J]. IEEE Transactions on Signal Processing. 2008, 56(7): 3023-3028.
LI Hai, ZHOU Meng. Parameter Estimation of Air Highly Maneuvering Targets under Phased Array System via CPT. Journal of Signal Processing, 2015, 31(11): 1539-1546.
[47]
P. Huang, G. Liao, Z. Yang, et al. Long-Time Coherent Integration for Weak Maneuvering Target Detection and High-Order Motion Parameter Estimation Based on Keystone Transform[J]. IEEE Transactions on Signal Processing. 2016, 64(15): 4013-4026.
[48]
X. Li, G. Cui, W. Yi, et al. A Fast Maneuvering Target Motion Parameters Estimation Algorithm Based on ACCF[J]. IEEE Signal Processing Letters. 2015, 22(3): 270-274.
[49]
J. Zheng, H. Liu, Q. H. Liu. Parameterized Centroid Frequency-Chirp Rate Distribution for LFM Signal Analysis and Mechanisms of Constant Delay Introduction[J]. IEEE Transactions on Signal Processing. 2017, 65(24): 6435-6447.
[50]
J. Zheng, T. Su, H. Liu, et al. Radar High-Speed Target Detection Based on the Frequency-Domain Deramp-Keystone Transform[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2016, 9(1): 285-294.
[51]
X. Chen, J. Guan, N. Liu, et al. Maneuvering Target Detection via Radon-Fractional Fourier Transform-Based Long-Time Coherent Integration[J]. IEEE Transactions on Signal Processing. 2014, 62(4): 939-953.
[52]
X. Chen, J. Guan, N. Liu, et al. Detection of a Low Observable Sea-Surface Target With Micromotion via the Radon-Linear Canonical Transform[J]. IEEE Geoscience and Remote Sensing Letters. 2014, 11(7): 1225-1229.
[53]
X. Li, G. Cui, W. Yi, et al. Coherent Integration for Maneuvering Target Detection Based on Radon-Lv’s Distribution[J]. IEEE Signal Processing Letters. 2015, 22(9): 1467-1471.
[54]
X. Rao, H. Tao, J. Su, et al. Detection of constant radial acceleration weak target via IAR-FRFT[J]. IEEE Transactions on Aerospace and Electronic Systems. 2015, 51(4): 3242-3253.
[55]
X. Chen, J. Guan, X. Li, et al. Effective coherent integration method for marine target with micromotion via phase differentiation and radon-Lv's distribution[J]. IET Radar, Sonar & Navigation. 2015, 9(9): 1284-1295.
[56]
Li Xiaolong, Cui Guolong, Yi Wei, et al. Radar maneuvering target detection and motion parameter estimation based on TRT-SGRFT[J]. Elsevier B.V. 2017, 133.
WAN Yang, WANG Shou-Yong, WU Wei-Hua. Dynamic Programming Track Before Detect for Maneuvering Dim Targets. Journal of Signal Processing, 2013, 29(5): 584-590.
ZHOU Xu, XU Jia, JIAN Li-Chang, LONG Teng. Fast Long-time Hybrid Integration for Highly Maneuvering Radar Target Detection. Journal of Signal Processing, 2015, 31(12): 1547-1553.
Rong Juan, Liu Feifeng, Liu Quanhua,Long Teng. Coherent Integration of Small Target Echoes Based on LTE Signals: Target Scattering Modeling and Impact Analysis. Journal of Signal Processing, 2019, 35(6): 965-971.
[60]
X. Chen, J. Guan, G. Wang, et al. Fast and Refined Processing of Radar Maneuvering Target Based on Hierarchical Detection via Sparse Fractional Representation[J]. IEEE Access. 2019, 7: 149878-149889.
[61]
X. Chen, J. Guan, N. Liu, et al. Maneuvering Target Detection via Radon-Fractional Fourier Transform-Based Long-Time Coherent Integration[J]. IEEE Transactions on Signal Processing. 2014, 62(4): 939-953.
[62]
X. Chen, Y. Huang, N. Liu, et al. Radon-fractional ambiguity function-based detection method of low-observable maneuvering target[J]. IEEE Transactions on Aerospace and Electronic Systems. 2015, 51(2): 815-833.
[63]
X. Chen, J. Guan, Y. Huang, et al. Radon-Linear Canonical Ambiguity Function-Based Detection and Estimation Method for Marine Target With Micromotion[J]. IEEE Transactions on Geoscience and Remote Sensing. 2015, 53(4): 2225-2240.
[64]
X. Chen, J. Guan, W. Chen, et al. Sparse long-time coherent integration-based detection method for radar low-observable manoeuvring target[J]. IET Radar, Sonar & Navigation. 2020, 14(4): 538-546.
[65]
K. R. Varshney, M. ?etin, J. W. Fisher, et al. Sparse Representation in Structured Dictionaries With Application to Synthetic Aperture Radar[J]. IEEE Transactions on Signal Processing. 2008, 56(8): 3548-3561.
[66]
B. Yang, R. Liu, X. Chen. Sparse Time-Frequency Representation for Incipient Fault Diagnosis of Wind Turbine Drive Train[J]. IEEE Transactions on Instrumentation and Measurement. 2018, 67(11): 2616-2627.
Chen Xiaolong, Guan Jian, He You, Yu Xiaohan. High-resolution Sparse Representation and Its Applications in Radar Moving Target Detection[J]. Journal of Radars, 2017, 6(3): 239-251.
CHEN Xiao-long, GUAN Jian, DONG Yun-long, ZHAO Zhi-jian. Sea Clutter Suppression and Micromotion Target Detection in Sparse Domain. Chinese Journal of Electronics, 2016, 44(4): 860-867.
[71]
X. Yu, X. Chen, Y. Huang, et al. Fast Detection Method for Low-Observable Maneuvering Target via Robust Sparse Fractional Fourier Transform[J]. IEEE Geoscience and Remote Sensing Letters. 2020, 17(6): 978-982.
[72]
S. Pawar, K. Ramchandran. FFAST: An Algorithm for Computing an Exactly $ k$ -Sparse DFT in $O( k\log k)$ Time[J]. IEEE Transactions on Information Theory. 2018, 64(1): 429-450.
[73]
X. Chen, J. Guan, Y. He, et al. Detection of low observable moving target in sea clutter via fractal characteristics in fractional fourier transform domain[J]. IET Radar, Sonar & Navigation. 2013, 7(6): 635-651.